An Approach to Assess Inequality in Cumulative Impacts

Rachel Morello-Frosch & Bill Jesdale

UC Berkeley School of Public Health & Department of Environmental Science, Policy and Management

Cumulative Impact Assessment

To address:

Multiple factors

in a geographic area from combined emissions and discharges, from all sources, whether single or multimedia, routinely, accidentally, or otherwise released

Vulnerability

to take into account sensitive populations and socio-economic factors

Issues In Cumulative Impacts Assessment

INPUTS

What do we measure?

- -Hazard
- -Vulnerability
- -Resilience
- -Susceptibility

IMPACT

How do we measure and cumulate hazards?

- -Exposure
- -Emissions
- -Hazard location
- -Risk
- -Health impact
- -Benchmark exceedance
- -Population mean

Geographic scaleNeighborhood
Region

INEQUALITY

Who bears the burden?

- -Demographic disparities (e.g. SES, race/ethnicity)
- -Within regions
- -Between regions
- -Between different SES measures

TARGETING

What are priorities for intervention?

- -Where impact is high
- -Where vulnerability is high
- -Where inequality is high
- -When emissions reduction technology is available

Screening Scenario analysis

Issues In Inequality Assessment

INEQUALITY

Who bears the burden?

- -Demographic disparities (e.g. SES, race/ethnicity)
- -Within regions
- -Between regions
- -Between different SES measures

TARGETING

What are opportunities for intervention?

- -Where impact is high
- -Where vulnerability is high
- -Where inequality is high

Screening & Scenario analysis

Objectives of Inequality Assessment

- Derive methods that are transparent and scientifically sound
- Compare impacts and socio-demographic inequalities between and within regions
- Develop indicators that highlight inequality and CI impacts of potential policy interventions

Inequalities between and within regions

- Regional land use and economic development decisions often drive neighborhood impacts
- Exposure differences exist between regions
 - (e.g. LA versus San Francisco ozone levels)
- Inequality patterns among neighborhoods and socio-demographic groups differ between regions
- Necessitates both regional and neighborhood level assessments

Inequality Assessment: Air Toxics Example

- Three regions: estimated lifetime cancer risk from multiple ambient air toxics exposures
 - Los Angeles
 - San Diego
 - San Francisco
- Absolute inequalities across regions
- Inequality across different SES measures within regions
- Assessing potential policy interventions on inequality and CI

U.S. EPA's National Air Toxics Assessment (NATA)

- Dispersion model estimates long-term annual average outdoor air toxics and diesel particulate concentrations for 1999 for each census tract in the US
- Model includes mobile and stationary emissions sources, including:
 - Manufacturing (e.g. refineries, factories)
 - Non-Manufacturing (e.g. dry cleaners, chrome platers)
 - Mobile (on road and off road)
- NATA used as example only
 - Inequality assessment is flexible and can be applied to different metrics of cumulative impact or for single pollutants

Inequality Assessment: Air Toxics Example

- Three regions: estimated lifetime cancer risk from multiple ambient air toxics exposures
 - Los Angeles
 - San Diego
 - San Francisco

Absolute inequalities across regions

Absolute inequalities across regions: Race/ethnicity

cumulative air toxics cancer risk between highest and lowest proportion of racial/ethnic minority residents

Absolute inequalities across regions: Linguistic isolation

cumulative air toxics cancer risk between linguistically isolated and English-language dominant neighborhoods

Absolute inequalities across regions: Poverty rate

Absolute inequalities across regions: Home ownership

cumulative air toxics cancer risk between high and low home ownership rate neighborhoods

13

Note: SES categories based on statewide distribution

Inequality Assessment: Air Toxics Example

- Three regions: estimated lifetime cancer risk from multiple ambient air toxics exposures
 - Los Angeles
 - San Diego
 - San Francisco
- Absolute inequalities across regions
- Inequality across different SES measures within regions

Inequality across different SES measures within regions

cumulative cancer risk from air toxics between least and most advantaged neighborhoods in **Los Angeles** CMSA

Inequality across different SES measures within regions

Inequality across different SES measures within regions

cumulative cancer risk from air toxics between least and most advantaged neighborhoods in **San Francisco** CMSA

Inequality Assessment: Air Toxics Example

- Three regions: estimated lifetime cancer risk from multiple ambient air toxics exposures
 - Los Angeles
 - San Diego
 - San Francisco
- Absolute inequalities across regions
- Inequality across different SES measures within regions
- Assessing potential policy interventions on inequality and CI

effect of cutting cancer risk from cumulative air toxics by 20%

effect of targeting most polluted areas: cutting where cancer risk exceeds 200 per million by half

effect of targeting high poverty areas: cutting cancer risk in proportion to poverty rate

Potential interventions

- Broadly applied interventions may decrease regional CI, but may not decrease inequality
 - Scenario 1
- Targeting interventions in highly impacted or highly vulnerable areas can decrease regional CI and decrease inequality
 - Scenarios 2 and 3

Conclusions

- Inequality impacts can be examined simultaneously within and between regions
- Enables assessments of vulnerability by different SES measures
 - Highlights opportunities and points of intervention
- Facilitates scenarios analysis
 - Inequality effects within & across regions
 - CI effects region-wide